3.294 \(\int \frac {1}{x^{5/2} (a+b x^2)} \, dx\)

Optimal. Leaf size=204 \[ \frac {b^{3/4} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} a^{7/4}}-\frac {b^{3/4} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} a^{7/4}}+\frac {b^{3/4} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{7/4}}-\frac {b^{3/4} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} a^{7/4}}-\frac {2}{3 a x^{3/2}} \]

[Out]

-2/3/a/x^(3/2)+1/2*b^(3/4)*arctan(1-b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(7/4)*2^(1/2)-1/2*b^(3/4)*arctan(1+b^(1
/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(7/4)*2^(1/2)+1/4*b^(3/4)*ln(a^(1/2)+x*b^(1/2)-a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))
/a^(7/4)*2^(1/2)-1/4*b^(3/4)*ln(a^(1/2)+x*b^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(7/4)*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.533, Rules used = {325, 329, 211, 1165, 628, 1162, 617, 204} \[ \frac {b^{3/4} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} a^{7/4}}-\frac {b^{3/4} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} a^{7/4}}+\frac {b^{3/4} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{7/4}}-\frac {b^{3/4} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} a^{7/4}}-\frac {2}{3 a x^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^(5/2)*(a + b*x^2)),x]

[Out]

-2/(3*a*x^(3/2)) + (b^(3/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(7/4)) - (b^(3/4)*ArcTan
[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(7/4)) + (b^(3/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sq
rt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(7/4)) - (b^(3/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])
/(2*Sqrt[2]*a^(7/4))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {1}{x^{5/2} \left (a+b x^2\right )} \, dx &=-\frac {2}{3 a x^{3/2}}-\frac {b \int \frac {1}{\sqrt {x} \left (a+b x^2\right )} \, dx}{a}\\ &=-\frac {2}{3 a x^{3/2}}-\frac {(2 b) \operatorname {Subst}\left (\int \frac {1}{a+b x^4} \, dx,x,\sqrt {x}\right )}{a}\\ &=-\frac {2}{3 a x^{3/2}}-\frac {b \operatorname {Subst}\left (\int \frac {\sqrt {a}-\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{a^{3/2}}-\frac {b \operatorname {Subst}\left (\int \frac {\sqrt {a}+\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{a^{3/2}}\\ &=-\frac {2}{3 a x^{3/2}}-\frac {\sqrt {b} \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 a^{3/2}}-\frac {\sqrt {b} \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 a^{3/2}}+\frac {b^{3/4} \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} a^{7/4}}+\frac {b^{3/4} \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} a^{7/4}}\\ &=-\frac {2}{3 a x^{3/2}}+\frac {b^{3/4} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} a^{7/4}}-\frac {b^{3/4} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} a^{7/4}}-\frac {b^{3/4} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{7/4}}+\frac {b^{3/4} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{7/4}}\\ &=-\frac {2}{3 a x^{3/2}}+\frac {b^{3/4} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{7/4}}-\frac {b^{3/4} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{7/4}}+\frac {b^{3/4} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} a^{7/4}}-\frac {b^{3/4} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} a^{7/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 29, normalized size = 0.14 \[ -\frac {2 \, _2F_1\left (-\frac {3}{4},1;\frac {1}{4};-\frac {b x^2}{a}\right )}{3 a x^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(5/2)*(a + b*x^2)),x]

[Out]

(-2*Hypergeometric2F1[-3/4, 1, 1/4, -((b*x^2)/a)])/(3*a*x^(3/2))

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 167, normalized size = 0.82 \[ -\frac {12 \, a x^{2} \left (-\frac {b^{3}}{a^{7}}\right )^{\frac {1}{4}} \arctan \left (-\frac {a^{5} b \sqrt {x} \left (-\frac {b^{3}}{a^{7}}\right )^{\frac {3}{4}} - \sqrt {a^{4} \sqrt {-\frac {b^{3}}{a^{7}}} + b^{2} x} a^{5} \left (-\frac {b^{3}}{a^{7}}\right )^{\frac {3}{4}}}{b^{3}}\right ) + 3 \, a x^{2} \left (-\frac {b^{3}}{a^{7}}\right )^{\frac {1}{4}} \log \left (a^{2} \left (-\frac {b^{3}}{a^{7}}\right )^{\frac {1}{4}} + b \sqrt {x}\right ) - 3 \, a x^{2} \left (-\frac {b^{3}}{a^{7}}\right )^{\frac {1}{4}} \log \left (-a^{2} \left (-\frac {b^{3}}{a^{7}}\right )^{\frac {1}{4}} + b \sqrt {x}\right ) + 4 \, \sqrt {x}}{6 \, a x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

-1/6*(12*a*x^2*(-b^3/a^7)^(1/4)*arctan(-(a^5*b*sqrt(x)*(-b^3/a^7)^(3/4) - sqrt(a^4*sqrt(-b^3/a^7) + b^2*x)*a^5
*(-b^3/a^7)^(3/4))/b^3) + 3*a*x^2*(-b^3/a^7)^(1/4)*log(a^2*(-b^3/a^7)^(1/4) + b*sqrt(x)) - 3*a*x^2*(-b^3/a^7)^
(1/4)*log(-a^2*(-b^3/a^7)^(1/4) + b*sqrt(x)) + 4*sqrt(x))/(a*x^2)

________________________________________________________________________________________

giac [A]  time = 0.64, size = 178, normalized size = 0.87 \[ -\frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a^{2}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a^{2}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a^{2}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {1}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a^{2}} - \frac {2}{3 \, a x^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(b*x^2+a),x, algorithm="giac")

[Out]

-1/2*sqrt(2)*(a*b^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/a^2 - 1/2*sqrt(2)
*(a*b^3)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/a^2 - 1/4*sqrt(2)*(a*b^3)^(1
/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/a^2 + 1/4*sqrt(2)*(a*b^3)^(1/4)*log(-sqrt(2)*sqrt(x)*(a/b
)^(1/4) + x + sqrt(a/b))/a^2 - 2/3/(a*x^(3/2))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 143, normalized size = 0.70 \[ -\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, b \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )}{2 a^{2}}-\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, b \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )}{2 a^{2}}-\frac {\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, b \ln \left (\frac {x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}{x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}\right )}{4 a^{2}}-\frac {2}{3 a \,x^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(5/2)/(b*x^2+a),x)

[Out]

-1/4/a^2*b*(a/b)^(1/4)*2^(1/2)*ln((x+(a/b)^(1/4)*2^(1/2)*x^(1/2)+(a/b)^(1/2))/(x-(a/b)^(1/4)*2^(1/2)*x^(1/2)+(
a/b)^(1/2)))-1/2/a^2*b*(a/b)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)-1/2/a^2*b*(a/b)^(1/4)*2^(1/2)
*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)-1)-2/3/a/x^(3/2)

________________________________________________________________________________________

maxima [A]  time = 3.13, size = 187, normalized size = 0.92 \[ -\frac {\frac {2 \, \sqrt {2} b \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {2 \, \sqrt {2} b \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {\sqrt {2} b^{\frac {3}{4}} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}}} - \frac {\sqrt {2} b^{\frac {3}{4}} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}}}}{4 \, a} - \frac {2}{3 \, a x^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(5/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

-1/4*(2*sqrt(2)*b*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqr
t(a)*sqrt(sqrt(a)*sqrt(b))) + 2*sqrt(2)*b*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sq
rt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + sqrt(2)*b^(3/4)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + s
qrt(b)*x + sqrt(a))/a^(3/4) - sqrt(2)*b^(3/4)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/a^(3
/4))/a - 2/3/(a*x^(3/2))

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 53, normalized size = 0.26 \[ \frac {{\left (-b\right )}^{3/4}\,\mathrm {atan}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {x}}{a^{1/4}}\right )}{a^{7/4}}-\frac {2}{3\,a\,x^{3/2}}+\frac {{\left (-b\right )}^{3/4}\,\mathrm {atanh}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {x}}{a^{1/4}}\right )}{a^{7/4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(5/2)*(a + b*x^2)),x)

[Out]

((-b)^(3/4)*atan(((-b)^(1/4)*x^(1/2))/a^(1/4)))/a^(7/4) - 2/(3*a*x^(3/2)) + ((-b)^(3/4)*atanh(((-b)^(1/4)*x^(1
/2))/a^(1/4)))/a^(7/4)

________________________________________________________________________________________

sympy [A]  time = 30.40, size = 178, normalized size = 0.87 \[ \begin {cases} \frac {\tilde {\infty }}{x^{\frac {7}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\- \frac {2}{7 b x^{\frac {7}{2}}} & \text {for}\: a = 0 \\- \frac {2}{3 a x^{\frac {3}{2}}} & \text {for}\: b = 0 \\- \frac {2}{3 a x^{\frac {3}{2}}} + \frac {\sqrt [4]{-1} b \sqrt [4]{\frac {1}{b}} \log {\left (- \sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac {1}{b}} + \sqrt {x} \right )}}{2 a^{\frac {7}{4}}} - \frac {\sqrt [4]{-1} b \sqrt [4]{\frac {1}{b}} \log {\left (\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac {1}{b}} + \sqrt {x} \right )}}{2 a^{\frac {7}{4}}} + \frac {\sqrt [4]{-1} b \sqrt [4]{\frac {1}{b}} \operatorname {atan}{\left (\frac {\left (-1\right )^{\frac {3}{4}} \sqrt {x}}{\sqrt [4]{a} \sqrt [4]{\frac {1}{b}}} \right )}}{a^{\frac {7}{4}}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(5/2)/(b*x**2+a),x)

[Out]

Piecewise((zoo/x**(7/2), Eq(a, 0) & Eq(b, 0)), (-2/(7*b*x**(7/2)), Eq(a, 0)), (-2/(3*a*x**(3/2)), Eq(b, 0)), (
-2/(3*a*x**(3/2)) + (-1)**(1/4)*b*(1/b)**(1/4)*log(-(-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*a**(7/4))
- (-1)**(1/4)*b*(1/b)**(1/4)*log((-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*a**(7/4)) + (-1)**(1/4)*b*(1/
b)**(1/4)*atan((-1)**(3/4)*sqrt(x)/(a**(1/4)*(1/b)**(1/4)))/a**(7/4), True))

________________________________________________________________________________________